648 research outputs found

    Dynamic structure of stock communities: A comparative study between stock returns and turnover rates

    Full text link
    The detection of community structure in stock market is of theoretical and practical significance for the study of financial dynamics and portfolio risk estimation. We here study the community structures in Chinese stock markets from the aspects of both price returns and turnover rates, by using a combination of the PMFG and infomap methods based on a distance matrix. We find that a few of the largest communities are composed of certain specific industry or conceptional sectors and the correlation inside a sector is generally larger than the correlation between different sectors. In comparison with returns, the community structure for turnover rates is more complex and the sector effect is relatively weaker. The financial dynamics is further studied by analyzing the community structures over five sub-periods. Sectors like banks, real estate, health care and New Shanghai take turns to compose a few of the largest communities for both returns and turnover rates in different sub-periods. Several specific sectors appear in the communities with different rank orders for the two time series even in the same sub-period. A comparison between the evolution of prices and turnover rates of stocks from these sectors is conducted to better understand their differences. We find that stock prices only had large changes around some important events while turnover rates surged after each of these events relevant to specific sectors, which may offer a possible explanation for the complexity of stock communities for turnover rates

    How volatilities nonlocal in time affect the price dynamics in complex financial systems

    Full text link
    What is the dominating mechanism of the price dynamics in financial systems is of great interest to scientists. The problem whether and how volatilities affect the price movement draws much attention. Although many efforts have been made, it remains challenging. Physicists usually apply the concepts and methods in statistical physics, such as temporal correlation functions, to study financial dynamics. However, the usual volatility-return correlation function, which is local in time, typically fluctuates around zero. Here we construct dynamic observables nonlocal in time to explore the volatility-return correlation, based on the empirical data of hundreds of individual stocks and 25 stock market indices in different countries. Strikingly, the correlation is discovered to be non-zero, with an amplitude of a few percent and a duration of over two weeks. This result provides compelling evidence that past volatilities nonlocal in time affect future returns. Further, we introduce an agent-based model with a novel mechanism, that is, the asymmetric trading preference in volatile and stable markets, to understand the microscopic origin of the volatility-return correlation nonlocal in time.Comment: 16 pages, 7 figure

    StuArt: Individualized Classroom Observation of Students with Automatic Behavior Recognition and Tracking

    Full text link
    Each student matters, but it is hardly for instructors to observe all the students during the courses and provide helps to the needed ones immediately. In this paper, we present StuArt, a novel automatic system designed for the individualized classroom observation, which empowers instructors to concern the learning status of each student. StuArt can recognize five representative student behaviors (hand-raising, standing, sleeping, yawning, and smiling) that are highly related to the engagement and track their variation trends during the course. To protect the privacy of students, all the variation trends are indexed by the seat numbers without any personal identification information. Furthermore, StuArt adopts various user-friendly visualization designs to help instructors quickly understand the individual and whole learning status. Experimental results on real classroom videos have demonstrated the superiority and robustness of the embedded algorithms. We expect our system promoting the development of large-scale individualized guidance of students.Comment: Novel pedagogical approaches in signal processing for K-12 educatio

    Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry

    Get PDF
    A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS2 procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%–122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS
    • …
    corecore